Significance of metal ions in galactose-1-phosphate uridylyltransferase: an essential structural zinc and a nonessential structural iron.
نویسندگان
چکیده
Galactose-1-phosphate uridylyltransferase (GalT) catalyzes the reversible transformation of UDP-glucose and galactose-1-phosphate (Gal-1-P) into UDP-galactose and glucose-1-phosphate (Glc-1-P) by a double displacement mechanism, with the intermediate formation of a covalent uridylyl-enzyme (UMP-enzyme). GalT is a metalloenzyme containing 1.2 mol of zinc and 0.7 mol of iron/mol of subunits [Ruzicka, F. J., Wedekind, J. E., Kim, J., Rayment, I., and Frey, P. A. (1995) Biochemistry 34, 5610-5617]. The zinc site lies 8 A from His 166 in active site, and the iron site lies 30 A from the active site [Wedekind,J. E., Frey, P. A., & Rayment, I. (1995) Biochemistry 34, 11049-11061]. Zinc is coordinated in tetrahedral geometry by Cys 52, Cys 55, His 115, and His 164. His 164 is part of the highly conserved active-site triad His 164-Pro 165-His 166, in which His 166 is the nucleophilic catalyst. Iron is coordinated in square pyramidal geometry with His 296, His 298, and Glu 182 in bidentate coordination providing the base ligands and His 281 providing the axial ligand. In the present study, site-directed mutagenesis, kinetic, and metal analysis studies show that C52S-, C55S-, and H164N-GalT are 3000-, 600-, and 10000-fold less active than wild-type. None of the variants formed the UMP-enzyme in detectable amounts upon reaction with UDP-Glc in the absence of Gal-1-P. Their zinc content was very low, and the zinc + iron content was about 50% of that for wild-type GalT. Mutation of His 115 to Asn 115 resulted in decreased activity to 2.9% of wild-type, with retention of zinc and iron. In contrast to the zinc-binding site, Glu 182 in the iron site is not important for enzymatic activity. The variant E182A-GalT displayed about half the activity of wild-type GalT, and all of the active sites underwent uridylylation to the UMP-enzyme, similar to wild-type GalT, upon reaction with UDP-Glc. Metal analysis showed that while E182A-GalT contained 0.9 equiv of zinc/subunit, it contained no iron. The residual zinc can be removed by dialysis with 1,10-phenanthroline, with the loss in activity being proportional to the amount of residual zinc. It is concluded that the presence of zinc is essential for maintaining GalT function, whereas the presence of iron is not essential.
منابع مشابه
Molecular basis of classic galactosemia from the structure of human galactose 1-phosphate uridylyltransferase
Classic galactosemia is a potentially lethal disease caused by the dysfunction of galactose 1-phosphate uridylyltransferase (GALT). Over 300 disease-associated GALT mutations have been reported, with the majority being missense changes, although a better understanding of their underlying molecular effects has been hindered by the lack of structural information for the human enzyme. Here, we pre...
متن کاملGalactose-1-phosphate uridylyltransferase from Escherichia coli, a zinc and iron metalloenzyme.
Galactose-1-P uridylyltransferase purified from Escherichia coli cells grown in enriched medium contains approximately 1.2 mol of tightly bound zinc/mol of subunits as well as variable amounts of iron, up to 0.7 mol/mol of subunits, and no detectable Ca, Cd, Cu, Mo, Ni, Co, Mn, As, Pb, or Se. The chelators, 1,10-phenanthroline, 8-hydroxyquinoline, 8-hydroxyquinoline sulfonate, and 2,2'-bipyridy...
متن کاملThree-dimensional structure of galactose-1-phosphate uridylyltransferase from Escherichia coli at 1.8 A resolution.
Galactose-1-phosphate uridylyltransferase catalyzes the reversible transfer of the uridine 5'-monophosphoryl moiety of UDP-glucose to the phosphate group of galactose 1-phosphate to form UDP-galactose. This enzyme participates in the Leloir pathway of galactose metabolism, and its absence is the primary cause of the potentially lethal disease galactosemia. The three-dimensional structure of the...
متن کاملStructural analysis of the H166G site-directed mutant of galactose-1-phosphate uridylyltransferase complexed with either UDP-glucose or UDP-galactose: detailed description of the nucleotide sugar binding site.
Galactose-1-phosphate uridylyltransferase plays a key role in galactose metabolism by catalyzing the transfer of a uridine 5'-phosphoryl group from UDP-glucose to galactose 1-phosphate. The enzyme from Escherichia coli is composed of two identical subunits. The structures of the enzyme/UDP-glucose and UDP-galactose complexes, in which the catalytic nucleophile His 166 has been replaced with a g...
متن کاملOptimization of growth conditions For zinc Solubilizing Plant Growth associated Bacteria and Fungi
Plant growth promoting rhizobacteria can affect plant growth by different direct and indirect mechanisms [1]. PGPR influence direct growth promotion of plants by fixing atmospheric nitrogen, solubilizing insoluble phosphates, secreting hormones such as IAA, GAs, and Kinetics besides ACC deaminase production, which helps in regulation of ethylene. Induced systemic resistance (ISR), antibiosis, c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 38 40 شماره
صفحات -
تاریخ انتشار 1999